Progress on perfect graphs
نویسندگان
چکیده
A graph is perfect if for every induced subgraph, the chromatic number is equal to the maximum size of a complete subgraph. The class of perfect graphs is important for several reasons. For instance, many problems of interest in practice but intractable in general can be solved efficiently when restricted to the class of perfect graphs. Also, the question of when a certain class of linear programs always have an integer solution can be answered in terms of perfection of an associated graph. In the first part of the paper we survey the main aspects of perfect graphs and their relevance. In the second part we outline our recent proof of the Strong Perfect Graph Conjecture of Berge from 1961, the following: a graph is perfect if and only if it has no induced subgraph isomorphic to an odd cycle of length at least five, or the complement of such an odd cycle.
منابع مشابه
On the Eccentric Connectivity Index of Unicyclic Graphs
In this paper, we obtain the upper and lower bounds on the eccen- tricity connectivity index of unicyclic graphs with perfect matchings. Also we give some lower bounds on the eccentric connectivity index of unicyclic graphs with given matching numbers.
متن کاملLovász-Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs
We study the Lovász-Schrijver lift-and-project operator (LS+) based on the cone of symmetric, positive semidefinite matrices, applied to the fractional stable set polytope of graphs. The problem of obtaining a combinatorial characterization of graphs for which the LS+-operator generates the stable set polytope in one step has been open since 1990. We call these graphs LS+-perfect. In the curren...
متن کاملLovász-Schrijver SDP-operator and a superclass of near-perfect graphs
We study the Lovász-Schrijver SDP-operator applied to the fractional stable set polytope of graphs. The problem of obtaining a combinatorial characterization of graphs for which the SDP-operator generates the stable set polytope in one step has been open since 1990. In an earlier publication, we named these graphs N+-perfect. In the current contribution, we propose a conjecture on combinatorial...
متن کاملPerfect Matchings in Edge-Transitive Graphs
We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...
متن کاملPerfect $2$-colorings of the Platonic graphs
In this paper, we enumerate the parameter matrices of all perfect $2$-colorings of the Platonic graphs consisting of the tetrahedral graph, the cubical graph, the octahedral graph, the dodecahedral graph, and the icosahedral graph.
متن کامل$n$-Array Jacobson graphs
We generalize the notion of Jacobson graphs into $n$-array columns called $n$-array Jacobson graphs and determine their connectivities and diameters. Also, we will study forbidden structures of these graphs and determine when an $n$-array Jacobson graph is planar, outer planar, projective, perfect or domination perfect.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 97 شماره
صفحات -
تاریخ انتشار 2003